Transhot-JetsonNANO

A Smart Robotic Platform Powered
by Al and Jetson Nano

Chris Kim

Rutgers University

About Me

- Third-year Student at Rutgers University

- Double Major in Computer Science and Data Science

- Interests: AI Prompt Engineering, Music

\\\V"//Z

- What is LIDAR and ROS?
- Key Components of the Robot
- Three LIDAR modes

controlling with a Smartphone

ROS:

- An open-source, flexible framework for g

rqt_graph_RosGraph - rqt

¢ Nodes/Topics (active) v |lf /

writing robot software ; o
Group: 2 |+ Namespaces v Actions v'tf v Images = Highlight v Fit ' °
—~ PIOVIdCS tOOlS, llbrarles7 and Hide: v Deadsinks ! Leaftopics v Debug 'tf v Unreachable v Params
conventions to build complex, reliable
robot behavior across many platforms
- Widely used in research and industry
for autonomous vehicles, robotic arms,

drones, and service robots

LIDAR

- Single-line LIDAR emits one laser beam from the source
- Two main types: Triangular Ranging and Time of Flight (ToF)

- High-speed scanning with excellent resolution

- Offers better angular frequency and sensitivity compared to multi-line
LiDAR

- Ideal for precise distance measurement and obstacle detection

How LIiDAR and Depth Camera Work Together

= + oo

L| DAR Depth camera
provides precise adds 3D perception
distance measurements and object recognition
and 2D scanning image and depth data

- Together, they create a detailed map of the robot’s surroundings

- Enables accurate navigation, obstacle avoidance, and object interaction

How LIDAR Perceives the Environment

Top: LiDAR emits a laser signal from the sensor

Middle: Obstacles and distances are detected and
mapped

Bottom: The system processes this data to build a 2D
representation of the surroundings

Important Parts of the Robot

- Robotic Arm — Picks up small objects
and moves them to different positions

- Depth Camera — Enables navigation,
obstacle detection, and object
recognition

- Robot Frame — The physical structure
that holds all components together

- Expansion Board — Integrates
additional sensors and modules to
enhance functionality

Real-World Applications of LIDAR and Depth Sensing

Simultaneous Localizati

on ~
and Mapping (SLAM) //

Robots build a map while tracking
their own position in real time

& Avoidance

Helps robots detect and navigate around
obstacles in real time

3D Environmental Scanning &

Reconstruction Used in architecture,

archaeology, and robotics to create detailed
3D models

¥

Human-Computer Interaction

Enables interactive systems like
gesture recognition and augmented reality

3

base.launch - Startup Configuration for Transhot

<include file=

find rplidar_ros/
launch/rplidar.
launch">

<node pkg="transbot_bringup"
type="transbot_driver.py"
name="transbot_node"
required="true"
<param name="imw" value//i-
<param name="vel"
value//transbot/get_vel />

<include file=
find
transbot_ctrl/
launch/transbot_joy
launch">

Lidar Obstacle Avoidance

1. Set Detection Angle & Range: Define the detection angle (e.g., 180° or 360°) and the
range within which obstacles are detected.
2. Initial Movement: The robot moves forward in a straight line unless an obstacle is

detected.
3. Obstacle Detection: LiDAR scans for obstacles and determines their position relative to

the robot:
a. Front Left - Obstacle detected on the front-left side.
b. Front Right - Obstacle detected on the front-right side.
c. Straight Ahead - Obstacle directly in the front.
4. Robot Response: Based on the detected position, the robot adjusts its path:
a. Front Left: Turn slightly right.
b. Front Right: Turn slightly left.
c. Straight Ahead: If close: Turn sharply (big circle) either left or right depending on the clearance.
i. If distant: Make a smaller turn.

laser_Avoidance.launch — LiDAR-Based Obstacle Avoidance

base.launch

<include file="$(find transbot laser)/launch/base.launch"/> “1C|U(je

rplidar_launch

<launch>

<!-- Start base.launch file-->

<!-- Start the lidar obstacle avoidance node -->

<node name='laser Avoidance' pkg="transbot laser"

type="laser Avoidance.py" required="true" output="screen"/>

</launch>

rplidar_launch transbot_driver

Lidar Guard

- Once the detection angle and response distance are set, the robot locks onto the
closest target as soon as it powers on.

- If the target enters the predefined response range, a buzzer is triggered and
continues until the target exits that range.

- Additionally, you can fine-tune the robot’s rotational response using PID control
to ensure smooth and efficient tracking.

laser_Warning.launch - Activating LiDAR Guard Node

<launch> laser_Warning.launch

<!-- Start base.launch file -->
<include file="$(find transbot laser)/launch/base.launch"/> base.launch

<!-- Start the lidar guard node -->

<node name='laser Warning' pkg="transbot laser"
type="laser Warning.py" required="true" output="screen"/> laser Warning
</launch>
laser_Warning.py

Lidar Follow Mode

- After setting the detection angle and distance, the robot automatically follows the
closest target while maintaining a safe buffer.

- If an obstacle is detected behind the fobot, a buzzer sounds and the robot stops
until the path is clear.

- PID control allows fine-tuning of the robot’s linear and angular velocity for
smooth, efficient following behavior.

laser_Tracker.py - Target Detection Logic

front_state = False

back_state = True

front_state = False
back_state = True

offset = 0.5

If the lidar scans a circle, there are 720 IDs offset = 0

if len(np.array(scan data.ranges)) == 720: if the lidar scans a circle,

for i in range(270, 450): there are 720 IDs
Check whether there are target behind

if ranges[i] < 0.5: back_state = False

if any(ranges[:60)

Check whether there are target front left and baCK—State if there are targEt ahead :

if ranges[i] < (self.ResponseDist + offset): front_state offset = SElf-ReSPOHSGDISttanCG o
i in range(720 - self.priorityAngle * 2, 720): self.priorityAngle

Check whether there are target front right

i in range(0, self.priorityAngle * 2):

if ranges[i] < (self.ResponseDist + offset): front_state
if front_state == True: angle_min = self.prior- .
When there are target ahead ltyi-\ngle lf there are no target ahead
angle_min = self.priorityAngle * 2 angle_min' angle_max =
angle max = 720 - self.priorityAngle * 2 self.Get ID minDist
Get target ID and minimum distance (angle_max, ranges rlnne)
minDistID, self.minDist = self.Get_ID_minDist(angle min, angle_max = seif_prior_
angle_max, ranges) tAngle
else:
When there are no target ahead
angle min = self.laserAngle * 2
angle max = 720 - self.laserAngle * 2
Get obstacles ID and minimum distance
minDistID, self.minDist = self.Get_ID minDist(angle_min,

angle_max, ranges)

DEMO

Thank You!

